PVeducation.com

All About Solar Electric Systems and Components

  • Welcome
  • About
  • General Information
    • Working Safely with Photovoltaic Systems
    • Climate-101
    • Leasing Solar Systems
  • Solar Module Quality
    • Poor Quality Solar Module
    • Poor Quality Control – Solar Cell Color Differences
    • Snail Trails
  • Solar Concepts
    • Solar Cells, Modules, and Arrays
    • Series and Parallel Wiring
    • Sun Path
    • Solar Azimuth
    • Roof Pitch and Roof Angle (Degrees)
    • Electrical Fundamentals
    • Weight of Typical Pitched Roof Solar System
    • Solar PV Module Efficiency
    • Fixed or Tracking Array
    • Shadow Calculations for Row Spacing
    • Battery State of Charge vs Open Circuit Battery Voltage
    • Solar System Output
    • sREC – Solar Renewable Energy Credits
    • Roof Zones
    • Common Electrical Services
  • Solar System Types
    • Grid Tied Residential and Small Commercial Solar System with String Inverter
    • Grid Tied Residential and Small Commercial Solar System with Micro Inverters
    • Solar System with Direct Load
    • Grid Tied Large Commercial Solar System
    • Off Grid Solar System with DC Loads
    • Off Grid Solar System with DC and AC Loads
    • Grid Tied Battery Backup Solar System
  • Designing an Off Grid Solar Electric System
    • Designing an Off Grid Solar Electric System, Step 1, Planning Considerations
    • Designing an Off Grid Solar Electric System, Step 2, Determine the Total Load
    • Designing an Off Grid Solar Electric System, Step 3a, Determine the Amount of Solar Needed Using an MPPT Controller
    • Designing an Off Grid Solar Electric System, Step 4, Sizing the Battery Bank
    • Stand-Alone Photovoltaic Systems Book
  • System Design Equations
    • Calculate Array Voltage
  • Solar Installation Failures and What Not To Do
    • Squirrel Damage
    • Using the Wrong Disconnect
    • Poor Fused Combiner Design
    • Wrong Conduit
    • Improper Row Spacing
    • Badly Placed Conduit and Bad Roof Penetration
    • Inverter Commissioning
    • Water Filled Enclosures
  • Design Parameters
    • Conductor Ampacity of AL
    • Conductor Ampacity of CU
    • Temp Adjustment Conduit on Roof
    • Conduit Fill Table
    • Adjustment Factors Qty of Conductors
    • Solar Radiation by State
    • US Irradiance Maps
    • Wind Speed, Snow Load, Seismic Ratings, Temperature
You are here: Home / Solar Installation Failures and What Not To Do / Inverter Commissioning

Inverter Commissioning

After a solar system is installed it is important to properly commission the solar system. This means taking a volt meter through the system to verify you have the correct voltage inputs to the equipment being used. This photo was sent to me by a customer that I sold 2 inverters. Unfortunately for this installer he wired the solar array incorrectly and input 1200 volts to a 600 volt inverter. As a result, the capacitors and other parts inside the inverter failed instantly.  What made it worse for this installer is that after he turned on the first inverters and it popped and smoked his reaction was to turn the second inverter on to see if it would work. Within the matter of seconds he destroyed two inverters and voided their warranties all because he didn’t check the input voltages.

do-not-do-this-damaged-inverter

 

View Michael Howell's profile on LinkedIn

Privacy Policy

Terms and Conditions

Copyright © 2023 · Log in